1.1 The Python Memory Model: Introduction
DATA

e Data is stored in objects
e Objects have three components : id, type ,value

ID
e Unique identifier of the object
e lIts like a unigue memory address
e See object’s id by calling id function

TYPE
e Determines what functions and python operators can operate on it
e See object’s type by calking type function

VARIABLES
¢ Is not an object, doesn’t store data
¢ REFERS to an object that stores data (has an id)
e When the variable is called: Variable -> Refers to the object through the ID

e Id : upper-right
e Type: upper left
e Object center

F st

Niave.

3
i

Objects have a type, but variables

MUTABILITY AND ALIASING

IMMUTABLE DATA TYPES:
e "Building Blocks"
e Value stored in an object of that type cannot change
e Intergers, strings, booleans, tuples
e For example: once you concatenate a string, a new ID is created :)

MUTABLE DATA TYPES:
e More Complex, use the building blocks
e Lists, dictionaries, user-defined classes
e The ID doesn’t change when mutating the object.

don't!

,,_A ll'S"’ L. can
© LR 2 3 4 5 / d’\t’ﬂ@
e | (2] oo [
2
| T%
Emp=E
- et
l -
 ren it f‘% ik sk
TIH: ‘j \’4‘,@) abiors
[OOO000 \“\. } ‘\ / O ' '\ M‘g 4%
—_ == Hese loxes
z.@\\'? o) \ ra(?gj t [;ﬂ“\
| 29 | | 3° g J

ALIASING:

e When two variables refer to the same object

e Have the same ID

e Even though two lists might have the same elements, they have different memory
addresses.

e "Action at a distance™:
o Modifying a variable’s value w/o explicitly mentioning that value
o Mutable data types -> side effect of action @ a distance
o Immutable data types - . Don't change, unaffected!

e Sometimes making a copy so changes can be made w/o affecting the original is good :
often unnecessary though.

Changing a reference is not the same as mutating
a value!

VALUE EQUALITY:

[/ p——) |
o -_——

e Compares the values stored in the objects they reference

IDENTITY EQUALITY:
° llisll
e Compares the ids of the objects they reference

