
1.1 The Python Memory Model: Introduction
DATA

Data is stored in objects
Objects have three components : id, type ,value

ID
Unique identifier of the object
Its like a unique memory address
See object’s id by calling id function

TYPE
Determines what functions and python operators can operate on it
See object’s type by calking type function 

VARIABLES
Is not an object, doesn’t store data
REFERS to an object that stores data (has an id)
When the variable is called: Variable -> Refers to the object through the ID

Id : upper-right
Type: upper left
Object center



Objects have a type, but variables don’t!

MUTABILITY AND ALIASING

IMMUTABLE DATA TYPES:
“Building Blocks"
Value stored in an object of that type cannot change
Intergers, strings, booleans, tuples
For example: once you concatenate a string, a new ID is created :)

MUTABLE DATA TYPES:
More Complex, use the building blocks 
Lists, dictionaries, user-defined classes
The ID doesn’t change when mutating the object.



ALIASING:
When two variables refer to the same object
Have the same ID
Even though two lists might have the same elements, they have different memory 
addresses.
“Action at a distance”:

Modifying a variable’s value w/o explicitly mentioning that value
Mutable data types -> side effect of action @ a distance
Immutable data types - . Don’t change, unaffected!

Sometimes making a copy so changes can be made w/o affecting the original is good : 
often unnecessary though.

Changing a reference is not the same as mutating 
a value!

TWO TYPES OF EQUALITY

VALUE EQUALITY:
“==“
Compares the values stored in the objects they reference 

IDENTITY EQUALITY:
"is"
Compares the ids of the objects they reference


