
1.2 The Python Memory Model: Functions and
Parameters
HOW FUNCTION CALLS ARE TRACKED

Stack Frame: keeps track of the function its running and the variables defined inside of
it.
Call Stack: pile of frames that already exist

FUNCTION CALLS:
1. New frame is created and placed on top of call stack
2. Each parameter is defined inside frame
3. Argument in function call is evaluated & object is assigned to corresponding parameter.
4. Body of function is executed & local variables are stored in the frame

FUNCTION RETURNS:
Executing a return statement / end of the function
Frame of function call is deleted : parameters & local variables disappear

PASSING AN ARGUMENT CREATES AN ALIAS:
“Parameter passing” -> variable assignment
If argument to function is a variable :

The ID of the object the variable references is assigned to function’s parameters (THE
ALIAS)

PASSING REFERENCE TO AN IMMUTABLE OBJECT:
No effect outside the function

PASSING REFERENCE TO A MUTABLE OBJECT:
Has an effect

The parameter lst exists in the stack frame. It comes into being when the function is
called. And when the function returns, this frame will be discarded, along with everything in
it. At that point, lst no longer exists.

When we pass argument sentence to lst , we assign it to lst . In other
words, we set lst to id2 , which creates an alias.
id2 is a reference to a list object, which is mutable. When we use lst to access
and change that object, the object that sentence references also changed. Of
course it does: they are the same object!

