
1.4 Python Type Annotations

Variable types never change!
Only objects have a Type.

PYTHON TYPES:
PRIMITIVE TYPES:

We use their type names (in type contract)
None is referred to as value and type

COMPOUND TYPES:
We use their type names (in type contract) & specify their primitive types

What type do the list, dict, tuple take? (That’s where we are more specific)
Typing module : expresses the more detailed types (primitive)

ANNOTATING FUNCTIONS:
def can_divide(num: int, divisor: int) -> bool:

Annotate the type of parameters after the semicolon
Annotate the return type after the arrow
To use compound types import typing module

ANNOTATING INSTANCE ATTRIBUTES:
Attributes and their types go in the body of the class , at the top: after docstrings &
before methods.

ANNOTATING METHODS:

Self is not annotated: its the class that this method belongs to
When the class is the type of another parameter/ the return type of a method : Include
this import statement at the top of the python file.
Let's say you haven’t defined a function yet, you are saying that you will define it
eventually.

4 ADVANCED TYPES:
Imported from the python module
ANY:

The type of the function can be anything
Don’t overuse it… defeats purpose of annotations = be specific!

UNION:
The value can be one of two different types

OPTIONAL:
Shorter way, Instead of using union (equivalent to Union[Type, None])
The value can be a certain type or none.

CALLABLE:
The type of a parameter, return value / instance value is a function
Two expressions in square brackets: (Basically the type contract for that variable; which
is a function)
1. List of the arguments types
2. Return type

