1.4 Python Type Annotations

e Variable types never change!
e Only objects have a Type.

PYTHON TYPES:

PRIMITIVE TYPES:
e We use their type names (in type contract)
e None is referred to as value and type

Type name Sample values

04 1484-3
4.5342.00-3.49
'hello world'§'"
TrueflFalse
None None

COMPOUND TYPES:
e We use their type names (in type contract) & specify their primitive types

o What type do the list, dict, tuple take? (That's where we are more specific)
e Typing module : expresses the more detailed types (primitive)

Type Description Example
a list whose elements are all of type NKFRER] has type
a dictionary whose keys are of type has
and whose values are of type type
IR - tuple whose first element has type [, (LRI has type
second element has type [, etc. Tuple[str, bool, float]

We can nest these type expressions within each other; for example, the nested list [§RIFAEIREEYAN
has type [REIANSESANTAMN].

ANNOTATING FUNCTIONS:
« def can divide(num: int, divisor: int) -> bool:
o Annotate the type of parameters after the semicolon
o Annotate the return type after the arrow
o To use compound types import typing module

ANNOTATING INSTANCE ATTRIBUTES:

o Attributes and their types go in the body of the class, at the top: after docstrings &
before methods.

from typing import Dict, Tuple

class Inventory:

size: int
items: Dict[int, Tuple[str, int]]

ANNOTATING METHODS:

e Self is not annotated: its the class that this method belongs to

e« When the class is the type of another parameter/ the return type of a method : Include
this import statement at the top of the python file.

o Let's say you haven't defined a function yet, you are saying that you will define it
eventually.

the special impc

from __future__ import annotations

class Inventory:

The type of self
def __init__(self)

def add_item(self, item: str, quantity: int) -> None:

def get_stock(self, item: str) -> int:

compare(self, other: Inventory) -> bool:
copy(self) -> Inventory:

merge(self, others: List[Inventory]) -> None:

Imported from the python module

ANY:
e The type of the function can be anything
e Don’'t overuse it... defeats purpose of annotations = be specific!

from typing import Any

This function could return a value
def get_first(items: list) -> Any:
return items[0]

UNION:
e The value can be one of two different types

from typing import Union

def cube_root(x: Union[int, float]) -> float:
return x ** (1/3)

OPTIONAL:
e Shorter way, Instead of using union (equivalentto Union[Type, None])
e The value can be a certain type or none.

from typing import Optional

def find_pos(numbers: List[int]) -> Optional[int]:

LNE 1rst posSitive numoer 1n the giver

for n in numbers:
if n > 0:
return n

CALLABLE:
e The type of a parameter, return value / instance value is a function
e Two expressions in square brackets: (Basically the type contract for that variable; which
is a function)
1. List of the arguments types
2. Return type

