
2.1 Introduction to Object-Oriented
Programming

Defining a class allows us to :
Specify the structure of data precisely
Control operations performed on data so its always well-formed

DEFINING A CLASS: ATTRIBUTES
CLASS:

*Blueprint / Template *
Block of code that defines a type of data
Have arbitrary # of attributes / methods
Attributes can be of different types
Name of class : Capitalized

INSTANCE OF A CLASS:
An object that is part of a class
Can hold collection of data bundled together (instance attributes)
Everything in Python is an object !

INSTANCE ATRIBUTES:
Individual piece of data in an instance

DOCSTRING:
1. Gives a description of the Class & its instance attributes
2. Syntax for declaring instance attributes: <attribute_name>: <attribute
_type>

These annotations don’t affect the code, but automated tools use them to help us
write code & find bugs
Annotations in Docstring (meaning) and below it (types)!

CREATING AN INSTANCE OF A CLASS:
Defining a new type:
1. Importing the class
2. Creating a new instance: creates a new object and stores its reference in the

variable
>>> tweet = Tweet()

DEFINING AN INITIALIZER:
INITIALIZER:

TO CREATE AND INITIALIZE THE INSTANCE ATTRIBUTES
An initializer never has a return statement, or always returns None.
self:

First parameter of initializer
Refers to instance that will be initialized & been created
Never annotate it (its the class it belongs to)
Never pass a value for self
Automatically receives id of instance to be initialized

_ _ init _ _ is called automatically
Values in parentheses are passed to it

>>> from datetime import date
>>> t1 = Tweet('Giovanna', date(2018, 9, 18), 'Hello’)

CREATING INSTANCE ATTRIBUTES:
The “default" values

With the new object set up and a reference to it stored, we can access each of its
attributes using dot notation
>>> from datetime import date
>>> t1 = Tweet('Giovanna', date(2017, 9, 18), 'Hello

')
>>> t1.userid
'Giovanna'
>>> t1.created_at
datetime.date(2017, 9, 18)
>>> t1.content
'Hello'
>>> t1.likes
0

WHEN WE CREATE A NEW OBJECT:
1. Create new object (instance of the class)
2. Call _ _ init_ _ with new object passed to the parameter self , along with the other

arguments
3. Return the new object

DEFINING A CLASS: METHODS:
Functions defined within/ associated with a class
First parameter : self (refers to object we are operating on)
Separate entities from class itself
To use them outside of the class you need to import them

class Tweet:
 ...

 def like(self, n: int) -> None:
 """Record the fact that <self> received <n> lik
es.

 Precondition: n >= 0
 """
 self.likes += n

To use them outside of the class you need to import them
We call the methods using dot notation

>>> from datetime import date
>>> tweet = Tweet('Rukhsana', date(2017, 9, 16), 'Hey!'
)
>>> tweet.like(10) # dot notation!
>>> tweet.likes
10

METHODS vs FUNCTIONS:

METHODS:
Part of class’ definition
Form basis of how others can use the class
For most users of the class

FUNCTIONS:
That operate on a class instance need to be imported separately before they are
used
Users of the class must implement themselves for their specific needs

SPECIAL METHODS:
Called behind the scenes, you don't call them using regular method call syntax
Defined with double underscores around them
_ _ init _ _
https://www.python-course.eu/python3_magic_methods.php

https://www.python-course.eu/python3_magic_methods.php

