2.4 Inheritance: Introduction and
Methods

INHERITANCE:
o Relationship between two classes
o Making a (has methods that are shared in common / can be
factored put)
o Making (have methods that are more specific & inherit the common

methods from base class)

“If class B is a subclass of class A, then A is a superclass of
BII

TERMINOLOGY:
» Base class is a.k.a: superclass, parent class
e Subclass is a.k.a: derived class, child class

ABSTRACT CLASS:
o Has at least one abstract method: shouldn’t be instantiated & raises
Notimplemented error

class Employee:
'"An employee of a compsz

def get_monthly_payment(self) -> float:

n 2 adlloun LlNc CN1S LCMp .1
€ amount TO tThne
raise NotImplementedError

def pay(self, pay_date: date) -> None:

LS L

payment = self.get_monthly_payment()
print(f'An employee was paid {payment} on {date}.')

e The abstract method is redefined in the subclasses

class SalariedEmployee(Employee):
def get_monthly_payment(self) -> float:
Assuming an annual salary of 60,

return round(60000.0 / 12.0, 2)

class HourlyEmployee(Employee):
def get_monthly_payment(self) -> float:

Assuming a 160-hour work month and a
return round(160.0 * 20.0, 2)

>>> fred = SalariedEmployee()

>>> fred.get_monthly_payment()

5000.0

>>> jerry = HourlyEmployee()

>>> jerry.get_monthly_payment()
3200.0

RULE TO REMEMBER:

“ type(self) determines which class python first looks in for the method"

