
3.2 Stacks and Queues

"A pile of objects stacked up”
THE STACK ADT:

Contains zero or multiple items (simple but powerful)
Add an item -> top of the stack -> “pushing” onto the stack
Remove an item -> remove from top -> “popping” from the stack
Last-In-First-Out: LIFO Behaviour -> first item added to the stack is the last
item removed (Net Effect)

Data:
A collection of items

Operations:
Determine whether the stack is empty
Add an item (push)
Remove most recently-added item (pop)

List - based implementation of the Stack ADT:
Using the back of the list as the top of the stack

class Stack:
 """A last-in-first-out (LIFO) stack of items.

 Stores data in first-in, last-out order. When removing an item from the
 stack, the most recently-added item is the one that is removed.
 """
 # === Private Attributes ===
 # _items:
 # The items stored in the stack. The end of the list represents
 # the top of the stack.
 _items: List

 def __init__(self) -> None:
 """Initialize a new empty stack.
 """
 self._items = []

 def is_empty(self) -> bool:
 """Return whether this stack contains no items.

 >>> s = Stack()
 >>> s.is_empty()

 True
 >>> s.push('hello')
 >>> s.is_empty()
 False
 """
 return self._items == []

 def push(self, item: Any) -> None:
 """Add a new element to the top of this stack.
 """
 self._items.append(item)

 def pop(self) -> Any:
 """Remove and return the element at the top of this stack.

 >>> s = Stack()
 >>> s.push('hello')
 >>> s.push('goodbye')
 >>> s.pop()
 'goodbye'
 """

 return self._items.pop()

THE QUEUE ADT:
Contains zero or more items
Items come in order in which they entered.
First-In-First-Out: FIFO behaviour

Data:
A collection of items

Operations:
Determine whether the stack is empty
Add an item (enqueue)
Remove the least recently-added item (dequeue)

