
3.4 Analysing Program Running Time

List - based implementation of the Stack ADT:
Using the front of the list as the top of the stack

class Stack2:

    """Alternate stack implementation.

    This implementation uses the *front* of the Python list to represent

    the top of the stack.

    """

    # === Private Attributes ===

    # _items:

    #     The items stored in the stack. The front of the list represents

    #     the top of the stack.

    _items: List

    def __init__(self) -> None:

        """Initialize a new empty stack."""

        self._items = []

    def is_empty(self) -> bool:

        """Return whether this stack contains no items.

        >>> s = Stack()

        >>> s.is_empty()

        True

        >>> s.push('hello')

        >>> s.is_empty()

        False

        """

        return self._items == []

    def push(self, item: Any) -> None:

        """Add a new element to the top of this stack."""



        self._items.insert(0, item)

    def pop(self) -> Any:

        """Remove and return the element at the top of this stack.

        Raise an EmptyStackError if this stack is empty.

        >>> s = Stack()

        >>> s.push('hello')

        >>> s.push('goodbye')

        >>> s.pop()

        'goodbye'

        """

        if self.is_empty():

            raise EmptyStackError

        else:

            return self._items.pop(0)

TIMEIT:
Rough estimate of how long it takes code to run



MEMORY ALLOCATION FOR  LISTS IN PYTHON:
They are an object  that contains an ordered sequence of references to other 
objects
List must be continuous
Insertion and deletion is less efficient as all items have to be moved up/down 
by one block of memory.
Tradeoff : give up fast insertion and deletion for fast lookup by index!
Python allocates more memory to the end of a list than it needs which is why 
its faster to add/remove items AT THE END OF A LIST!

ANALYSING ALGORITHMIC RUNNING TIME:



Correctness: 
Does code work even with corner cases & does it handle errors?  

Design:
Is the code easy to understand and easy to implement?

BIG OH  NOTATION:
Ignoring constants, focusing on behaviour as problem size grows (asymptotic  
runtime)




