3.4 Analysing Program Running Time

List - based implementation of the Stack ADT:
Using the front of the list as the top of the stack

class Stack2:

nun

Alternate stack implementation.

This implementation uses the *front* of the Python list to represent

the top of the stack.

=== Private Attributes ===

_items:

The items stored in the stack. The front of the list represents
the top of the stack.

_items: List

def (self) -> None:

Initialize a new empty stack."""

self. items = []

def is_empty(self) -> bool:

Return whether this stack contains no items.

>>> s = Stack()

>>> s.is empty()
True

>>> s.push('hello')
>>> s.is empty()
False

nun

return self. items == []

def push(self, item: Any) -> None:

"""Add a new element to the top of this stack."""

self. items.insert(0, item)

def pop(self) -> Any:

Remove and return the element at the top of this stack.
Raise an EmptyStackError if this stack is empty.

>>> s = Stack()
>>> s.push('hello')
>>> s.push('goodbye')
>>> s.pop()
'goodbye'’
if self.is_empty():
raise EmptyStackError
else:

return self. items.pop(0)

TIMEIT:
e Rough estimate of how long it takes code to run

def push_and_pop(s: Stack) -> None:

s.push(1)
s.pop()

if __name__ == '__main__'

from timeit import timeit

STACK_SIZES = [1000, 10000, 100000, 1000000, 10000000]
for stack_size in STACK_SIZES:

stack = Stack()

stack._items = list(range(stack_size))

H e globals=globals i for a technical reason that you can ignore
time = timeit('push_and_pop(stack)', number=1000, globals=globals())
when 1t "1NTeC 2add1lng TO a MmC] I —e

print(f'Stack size {stack_size:>8}, time {time}')

MEMORY ALLOCATION FOR LISTS IN PYTHON:

e They are an object that contains an ordered sequence of references to other
objects

e List must be continuous

e |nsertion and deletion is less efficient as all items have to be moved up/down
by one block of memory.

e Tradeoff : give up fast insertion and deletion for fast lookup by index!

e Python allocates more memory to the end of a list than it needs which is why
its faster to add/remove items AT THE END OF A LIST!

ANALYSING ALGORITHMIC RUNNING TIME:

e Correctness:
o Does code work even with corner cases & does it handle errors?

e Design:
o |s the code easy to understand and easy to implement?

BIG OH NOTATION:

e |gnoring constants, focusing on behaviour as problem size grows (asymptotic
runtime)

Big-Oh Growth term

O(log n) logarithmic
O(n) linear
O(n°) quadratic

O(2") exponential (with base 2)

Big-Oh Relationship

O(logn) N;=Np+c
O(n2) N, = 4N,

02" Ny=(NoP

