
4.3 Linked List Mutation
MAJOR MUTATING OPERATIONS ON A LINKED LIST:

Inserting items
Deleting items

INSERTING ITEMS:
Appending a new item at the end of a linked list
Only one attribute: reference to the first node in the list
Find the last node in the linked list, and then add the item to the end of that.
To check for the last node we change the condition to while curr.next
is not None

A more general initializer that takes in a list of values, which are appended one at a
time

INDEX-BASED INSERTION:
Transverse the list until we reach the correct index
We need insert into position index and access the node at position (index-1
)
If curr None then the list doesn’t have a node at position index-1 (so index is out of
bounds)
If curr is not None then we have reached desired index & can append the new
node.

**Since curr might have other nodes after it, its important to store the old nodes, so
that we don’t lose the reference to the old node at position index.**

The order in which we update the links REALLY MATTERS!!!! -> ONLY ONE ORDER
results in the correct behaviour

MULTIPLE ASSIGNMENT IN PYTHON:
This is soooo cooooooooool

! ! ! " " " # $ $ $

Since the expressions on the right side are evaluated before any new values are
assigned, You don’t need to worry about the order in which they are written !!

CORNER CASES TO THINK ABOUT:
What if the index = 0 -> doesn’t make sense to iterate to the (index-1)-th
node
Modifying self._first since we are inserting it in the front of the list.

