
4.4 Linked Lists and Running Time
MOTIVATION TO STUDYING LINKED LISTS:

Improving the efficiency of some of the basic list operations

RUNNING TIME OF THREE OPERATIONS OF ARRAY-BASED LISTS:
Looking up an element of the list by the index:

Takes constant time (independent of length of list/index we are looking up)
O(1)

Inserting/removing an element at index (0 <= i <= n):
List of length n takes time proportional to n - i
O(n - i)
Inserting/Removing at the front of a list: O(n) -> time linear in length of the list
Inserting/Removing at the end of a list: O(1)

LINKED LISTS:

When index == 0:
The branch that executes takes constant time as both assignments are 



independent of list’s length
Else (Inserting item at the end of the linked list):

The loop must iterate till it reaches the end of the list -> linear time
Linked lists have the exact opposite running-times as array_based lists !!!
Inserting into front of linked list : O(1) time
Inserting into the back of linked list: O(n) time

CONSTANT TIME:
Overall running time depends on the number of lines that execute -> depends on 
the number of times the loop runs

CONSIDER:
Whenever we write a Big-Oh expression to capture the fact that the running time 
can’t drop below 1
The body of the loop takes assignment statements -> constant time


