4.4 Linked Lists and Running Time

MOTIVATION TO STUDYING LINKED LISTS:
e Improving the efficiency of some of the basic list operations

RUNNING TIME OF THREE OPERATIONS OF ARRAY-BASED LISTS:

e Looking up an element of the list by the index:
o Takes constant time (independent of length of list/index we are looking up)
o O(1)

e Inserting/removing an element at index (0 <=i <= n):
o List of length n takes time proportional ton - |
o O(n-1i)
o Inserting/Removing at the front of a list: O(n) -> time linear in length of the list
o Inserting/Removing at the end of a list: O(1)

LINKED LISTS:

def insert(self, index: int, item: Any) -> None:

new_node = _Node(item)

if index ==
new_node.next = self._first
self._first = new_node
else:
curr_index = 0
curr = self._first
while curr is not None and curr_index < index - 1:

curr = curr.next
curr_index = curr_index + 1

if curr is None:
raise IndexError
else:
H ,,,,‘,l,,, e - e = el

curr.next, new_node.next = new_node curr.next

e Whenindex == 0:
o The branch that executes takes constant time as both assignments are



independent of list’s length
Else (Inserting item at the end of the linked list):
o The loop must iterate till it reaches the end of the list -> linear time
Linked lists have the exact opposite running-times as array_based lists !!!
Inserting into front of linked list : O(1) time
Inserting into the back of linked list: O(n) time

CONSTANT TIME:

e Overall running time depends on the number of lines that execute -> depends on
the number of times the loop runs

curr_index = 0
curr = self._first

while curr is not None and curr_index < index - 1:
curr = curr.next
curr_index = curr_index + 1

So how many times does the loop run? There are two possibilities for when it stops: when

curr is None QWi curr_index == index - 1}

« The first case means that the end of the loop was reached, which happens after [§ iterations, where
is the length of the list (each iteration, the variable advances by one node).

« The second case means that the loop ran times, since starts at 0 and
increases by 1 per iteration.

Since the loop stops when one of the conditions is false, the number of iterations is the minimum of
these two possibilities: min(n, index-1).

CONSIDER:

o Whenever we write a Big-Oh expression to capture the fact that the running time
can’'t drop below 1

o The body of the loop takes assignment statements -> constant time



