5.2 Nested Lists: A Recursive Data Structure

NEW APPROACH:
e Breaking down an object/ problem into smaller instances with the same structure
as the original

RECURSIVE DEFINITION:
It defines nested lists in terms of other nested lists
e Solve a problem by using an algorithm that calls itself on a smaller problem

DEPTH OF A NESTED LIST:
« The maximum number of times a list is nested inside other lists
e DepthO->[1, 2, 3]
e Depth1->[1, [2, 3]]

RECURVISE FUNCTION:
e A function that calls itself in the body
e Has base case & recursive case
o A.K.A self-referential definition

BASE CASE:
o Case where the object is an integer
o Straightforward, doesn’t involve recursion
e SIMPLEST PROBLEM, CAN'T BE BROKEN DOWN FURTHER (Where we stop
recursing)

RECURSIVE CASE:
o Case where object is a list
e Decomposing the input into smaller nested lists by calling itself on these
individually.
« MUST GUARANTEE TO GET TO BASE CASE

def sum_nested(obj: Union[int, List]) -> int:

turn the sum of the numbers in a nested]

if isinstance(obj, int):
ob] 1s an 1integer
return obj

else:
ob]
s =0
for sublist in obj:

each sublist is a nested list

s += sum_nested(sublist)
return s

WHEN WE ARE GIVEN A RECURSIVE FUNCTION... WE USE PARTIAL TRACING:

1. The input corresponds to a base case:
o Trace the if branch directly and ignore the else brach
o In our function the sum of a single int is that integer itself!

2. The input corresponds to a recursive case:
o We assume it is correct , use the correct return value & continue tracing the rest of

the code!

o One approach is to make a table of values:
o USE THE STEP OVER IN PYCHARM instead of the Step Into

) sum_nested(sublist) s|
N/A N/A 0] (initial value)

14
[6, 7] E
B 8

—
=

Y
w

ASSUMPTION IS VALID AS LONG AS:
1. You are sure the base case is correct
2. Every time you make a recursive call, it is on a smaller input than the original input
3. Idea is formed from the Principle of Mathematical induction & (.

IF RECURSIVE FUNCTION IS INCORRECT ... THREE POSSIBLE PROBLEMS:
e A base case is incorrect
e One or more recursive calls are not being made on a smaller input
e The recursive case is incorrect ... the code surrounding the recursive call is the problem

1. FIND RECURSIVE STRUCTURE OF THE IMPUT
o Can the data type be expressed recursively?
o Write a code template!! (Below for nested lists)

def f(obj: Union[int, List]) -> ...:
if isinstance(obj, int):

else:
for sublist in obj:
... f(sublist) ...

2. IDENTIFY & IMPLEMENT CODE FOR THE BASE CASE(S)
o Based on the structure of the input of the function
3. EXAMPLE OF THE FUNCTION CALL ON AN INPUT OF SOME COMPLEXITY
o Write down relevant recursive function calls (determined by structure of input)
o Write down output (Based on Docstring)
4. TAKE RESULTS & COMBINE THEM
o To produce correct output for the original call
o Implement the recursive step in ur code!

ANOTHER EXAMPLE (LECTURE)

