
6.4 Introduction to Binary Search 
Trees
THE MULTISET ADT (Behaviours)
AKA COLLECTION ADT

Check whether the collection is empty
Check whether a given item is in the collection
Add a given item to the collection
Remove a given item from the collection
Allows user to choose which item to remove unlike container-based ADTs (Stacks & 
Queues)

SEARCHING IN LISTS:
Behaviour that we have learned… iterate through every item and check
Additional structure to data == new, more efficient algorithms WOOOT WOOT 

!" #

If list is sorted… binary search is way more efficient!

BINARY SEARCH:
Compares target value to the middle element of the list.
If they aren’t equal, the half where the target can’t lie is eliminated!
Search continues on remaining half and process is repeated until target value is 
found.
If search ends with remaining half empty … target isn’t in the list.



BINARY SEARCH TREES:
Binary structure of trees + binary tree -> “sorted tree”
A tree in which every item has at most two subtrees
An item in the binary tree satisfies binary search property:

Its value >= all items in its left subtree
Its value <= all items in its right subtree

EVERY item in the tree satisfies the binary search property!
Naturally represent sorted data


