6.4 Introduction to Binary Search
Trees

THE MULTISET ADT (Behaviours)
AKA COLLECTION ADT
e Check whether the collection is empty
Check whether a given item is in the collection
Add a given item to the collection
Remove a given item from the collection
Allows user to choose which item to remove unlike container-based ADTs (Stacks &
Queues)

SEARCHING IN LISTS:
o Behaviour that we have learned... iterate through every item and check
. Add‘i;[ional structure to data == new, more efficient algorithms WOOOT WOOT &

O
o If listis sorted... binary search is way more efficient!

BINARY SEARCH:
o Compares target value to the middle element of the list.
 If they aren’t equal, the half where the target can't lie is eliminated!
e Search continues on remaining half and process is repeated until target value is
found.
« If search ends with remaining half empty ... target isn't in the list.



l
E—l
v

1 ‘3 ”4 16

7

Class

Data structure
Worst-case performance
Best-case performance
Average performance

Worst-case space
complexity

BINARY SEARCH TREES:

8 |10 ‘ 13 ‘.14 18 ‘.19’21 24

40 45

37

71

Visualization of the binary search algorithm
where 7 is the target value

Search
algorithm

Array
O(log n)
o(1)
O(log n)
O(1)

e Binary structure of trees + binary tree -> “sorted tree”
e Atreein which every item has at most two subtrees
¢ Anitem in the binary tree satisfies binary search property:

o Its value >= all items in its left subtree
o Its value <= all items in its right subtree

e EVERY item in the tree satisfies the binary search property!

o Naturally represent sorted data




