
6.7 Binary Search Trees and Running Time

The implementation of __contains__ , insert , and delete   has the same 
structure (one recursive call inside the recursive step)
Max number of recursive calls == height of the tree + 1 (maximum of a set of possible 
running times)

The extra call comes because our implementation also recurses into the empty 
subtree of a leaf

LOOKING AT _ _contains_ _:

All lines except the recursive call run in constant time
Total running time is proportional to the number of recursive calls made.
Max # Recursive calls roughly height of the tree:

O(n) , n = the height of the tree
Worst case: when the item we are looking for makes us recurse down to the deepest 
level and search one of its empty subtrees

O(n) , n = the height of the tree
Best case: when we search for the root number in the binary search Tree.

O(1) , independent of Tree’s height

WORST-CASE VS BEST-CASE RUNNING TIME:
Running time of function/method depends on:

Size of inputs
For fixed input size: searching for root item of BST vs searching for an item which is 
very deep in BST

Worst-case, Best-case should make sense for any input size!

WORST-CASE RUNNING TIME:
Function  WC(n)
Maps input size n to the maximum possible running time for all inputs of size n.



Family of inputs (each input results in max running time for its size.)

BEST-CASE RUNNING TIME:
Function  BC(n)
Maps input size n to the minimum possible running time for all inputs of size n.
Description for a family of inputs

TREE HEIGHT AND SIZE:
Searching through an unsorted list takes O(n), n is the size of the list
This doesn’t work for BST:

The height of the tree can be much smaller than its size
Considering a Binary Search Tree with n items:

Height can be as large as n
Height can be as small as log(n)

Three Collection operations (search, insert, delete):
Worst case running time : O(h) = O(log n)  , h is height and n is size

Since we can’t always guarantee the algorithm will be logarithmic we can’t really 
guarantee its efficiency yet :)




