6.7 Binary Search Trees and Running Time

o The implementationof = contains , insert, and delete hasthe same
structure (one recursive call inside the recursive step)
e Max number of recursive calls == height of the tree + 1 (maximum of a set of possible
running times)
o The extra call comes because our implementation also recurses into the empty
subtree of a leaf

LOOKING AT __contains_ _:

def __contains__(self, item: Any) -> bool:

if self.is_empty():
return False
else:
if item == self._root:
return True
elif item < self._root:
return item in self._left
else:
return item in self._right

All lines except the recursive call run in constant time

Total running time is proportional to the number of recursive calls made.

Max # Recursive calls roughly height of the tree:

o 0O(n), n = the height of the tree

Worst case: when the item we are looking for makes us recurse down to the deepest
level and search one of its empty subtrees

o O(n), n =the height of the tree

Best case: when we search for the root number in the binary search Tree.

o O(1), independent of Tree's height

WORST-CASE VS BEST-CASE RUNNING TIME:
e Running time of function/method depends on:
o Size of inputs
o For fixed input size: searching for root item of BST vs searching for an item which is
very deep in BST
o Worst-case, Best-case should make sense for any input size!

WORST-CASE RUNNING TIME:
e Function WC(n)
e Maps input size n to the maximum possible running time for all inputs of size n.



e Family of inputs (each input results in max running time for its size.)

BEST-CASE RUNNING TIME:
e Function BC(n)
e Maps input size n to the minimum possible running time for all inputs of size n.
e Description for a family of inputs

TREE HEIGHT AND SIZE:
e Searching through an unsorted list takes O(n), n is the size of the list
e This doesn’t work for BST:

o The height of the tree can be much smaller than its size

Considering a Binary Search Tree with n items:

o Height can be as large as n

o Height can be as small as log(n)

Three Collection operations (search, insert, delete):

o Worst case running time : O(h) = O(log n) , his height and n is size
Since we can't always guarantee the algorithm will be logarithmic we can't really
guarantee its efficiency yet :)

« Recall:
* logx=y <=> a’=x

» Example: 2° =32 <=>l0g,32 =5

* /og, n, often known in CS as /og n

« After all, base 2 is our favorite base in CS .. :)



* In a binary search tree, each Multiset operation’s worst-case running

time is proportional to the height A of the tree (where logn < h £ n).

operation SortedList Tree Binary Search Tree
search O(log n) O(n) O(h)
insert O(n) O(1) O(h)
delete O(n) O(n) O(h)
AVL trees ...

operation Sorted List Tree BST Balanced BST

search O(log n) O(n) O(Ah): O(n O(A): O(log n)

insert O(n) O(1) O(h): O(n O(Ah): O(log n)

delete O(n) O(n) O(h):0(n O(A: O(log n)



