# 6.7 Binary Search Trees and Running Time

- The implementation of <u>contains</u>, insert, and delete has the same structure (one recursive call inside the recursive step)
- Max number of recursive calls == height of the tree + 1 (maximum of a set of possible running times)
  - The extra call comes because our implementation also recurses into the empty subtree of a leaf

#### LOOKING AT \_ \_contains\_ \_:



- All lines except the recursive call run in constant time
- Total running time is proportional to the number of recursive calls made.
- Max # Recursive calls roughly height of the tree:
  - O(n) , n = the height of the tree
- Worst case: when the item we are looking for makes us recurse down to the deepest level and search one of its empty subtrees
  - O(n) , n = the height of the tree
- Best case: when we search for the root number in the binary search Tree.
  - O(1), independent of Tree's height

### WORST-CASE VS BEST-CASE RUNNING TIME:

- Running time of function/method depends on:
  - Size of inputs
  - For fixed input size: searching for root item of BST vs searching for an item which is very deep in BST
- Worst-case, Best-case should make sense for any input size!

### WORST-CASE RUNNING TIME:

- Function WC(n)
- Maps input size n to the maximum possible running time for all inputs of size n.

• Family of inputs (each input results in max running time for its size.)

### **BEST-CASE RUNNING TIME:**

- Function BC(n)
- Maps input size n to the *minimum* possible running time for all inputs of size n.
- Description for a family of inputs

## TREE HEIGHT AND SIZE:

- Searching through an unsorted list takes O(n), n is the size of the list
- This doesn't work for BST:
  - The height of the tree can be much smaller than its size
- Considering a Binary Search Tree with n items:
  - Height can be as large as n
  - Height can be as small as log(n)
- Three Collection operations (search, insert, delete):
  - Worst case running time :  $O(h) = O(\log n)$ , h is height and n is size
- Since we can't always guarantee the algorithm will be logarithmic we can't really guarantee its efficiency yet :)
- Recall:
  - $\log_a x = y <=> a^y = x$
  - Example:  $2^5 = 32 <=> \log_2 32 = 5$
  - log<sub>2</sub> n, often known in CS as log n
    - After all, base 2 is our favorite base in CS .. :)

• In a binary search tree, each Multiset operation's worst-case running time is proportional to the height *h* of the tree (where  $log n \le h \le n$ ).

| operation | Sorted List   | Tree          | Binary Search Tree |
|-----------|---------------|---------------|--------------------|
| search    | O(log n)      | O( <i>n</i> ) | O( <i>h</i> )      |
| insert    | O( <i>n</i> ) | O(1)          | O( <i>h</i> )      |
| delete    | O( <i>n</i> ) | O( <i>n</i> ) | O( <i>h</i> )      |

|           |                  |               |                              | AVL trees                              |
|-----------|------------------|---------------|------------------------------|----------------------------------------|
| operation | Sorted List      | Tree          | BST                          | Balanced BST                           |
| search    | O(log <i>n</i> ) | O( <i>n</i> ) | O( <i>h</i> ): O( <i>n</i> ) | O( <i>h</i> ): <b>O(log</b> <i>n</i> ) |
| insert    | O( <i>n</i> )    | O(1)          | O( <i>h</i> ): O( <i>n</i> ) | O( <i>h</i> ): <b>O(log</b> <i>n</i> ) |
| delete    | O( <i>n</i> )    | O( <i>n</i> ) | O( <i>h</i> ): O( <i>n</i> ) | O( <i>h</i> ): <b>O(log</b> <i>n</i> ) |