6.8 Expression Trees

e Amazing application of trees: representing programs

PYTHON INTERPRETER:
e Taking our python file and running it
e Strings -> linear structure
e Programs -> recursive structures
e When given a file:
o Parse text from file to Abstract Syntax Tree (ABT)
o The Abstract Syntax Tree can be modelled using tree-based data structures

THE EXPR CLASS:
e Expression : a piece of code which is meant to be evaluated, returns value of that
expression.
e Expressions are building blocks of the language (necessary for computations)
e There are diff types of expressions but kept within the same interface through
inheritance

class Expr:

def evaluate(self) -> Any:

raise NotImplementedError

NUMERIC CONSTANTS:
¢ Ints and floats
e The value of the constant (what the class does)
e The base cases/ leaves of an abstract syntax tree

class Num(Expr):

n: Union[int, float]

def __init__(self, number: Union[int, float]) -> None:
I | & ‘ 1Ze a oW umeril ‘

self.n = number

def evaluate(self) -> Any:

return self.n

BinOp ARITHMETIC OPERATIONS:
e Arithmetic operation: an expression of three parts (left and right subexpressions &
operator itself)
e Basically a binary tree:
o Root: the operand:
o Subtrees: left and right subexpressions

BinOp(Expr):

(left:Expr, op: str, right:
. left = left
.0p = 0p
.right = right

def evaluate(self) -> Any:

left_val = . left.evaluate()
right_val = .right.evaluate()

.0p = :
left_val + right_val

.0p = -
left_val * right_val

BinOp(
BinOp(Num(3), '+', Num(5.5)),

’

BinOp(
Num(90.5),
|+I’

BinOp(Num(15.2), '*', Num(-13.3)))

e Although there are recursive calls in the methods... the base cases themselves are the
child classes.

« In this case:
o Base Case is class Num
o BinOp Class makes the recursive call and adds or multiplies the numbers accordingly

