7.2 Efficiency of Recursive Sorting Algorithms

e To analyze the efficiency of recursive functions :
o Analyse non-recursive part of the code
o Factor in the cost for each recursive call made

MERGESORT:

def mergesort(lst):
1f len(lst) < 2:
return lst|[:]

else:
mid = len(lst) // 2 —> 1 s¥p
left = lst[:mid] > M2 (e
right = lst[mid:] ——> ™/2 sHps

left sorted = mergesort(left)
right sorted = mergesort (right) O(~lz +v)2) =
/’\ On)

return merge (left sorted, right sorted)

e For alist of length n where n >=2:

°© .« The "divide" step takes linear time, since the list slicing operations and each
take roughly n/2 steps to make a copy of the left and right halves of the list, respectively.l
o The operation also takes linear time, that is, approximately n steps (why?).
« The other operations (calling arithmetic, and the act of [f3anaging) all take constant time,
independent of n.
e For the non-recursive part is linear
e Recursive part:

%\:_2— }QE?:O Con 2

The height of the tree = recursion depth (# recursive calls made before base case is

reached)

Recursion depth of merge sort:

of times nis divided by 2 to getto 1 (2"k = n) -> logn
MERGESORT Worst-case/best-case running time: O(n log n)

ms([4, 2,6,8,1,3,5,7])

merge(ms([4, 2, 6, 8]) : ms([1,3,5,7]))

J

merge(?nerge(rg§([4,2]), m_s([G,Sj) , merge(ms([1,3]), ms ([5,7])

merge(merge(merge(ms([4], ms([2]), merge(ms([6]),ms([8]), merge(merge(ms([1],ms([3]),merge(ms([5]),ms([7])
merge(mer;e(meﬁ ge([4].[2]).merge([6].[8])), merge(merge([1].[3]).merge([5],[7])).
merge(merge([2,4]),[6,8])),merge([1,3]),[5,7]))
merge([2,4,6,8], [1,3,5,7])

(1,2,3,4,5,6,7,8]

QUICKSORT
e If the pivot is always in the middle then the running time is the same as merge sort!

gs(4,2,6,1,3,5,7))

as((2, 1, 3)) + [4] + as([6, 5, 7))

as((1) + [2] + qS([i])

(11 + f2 + B8 + [= (5] + [6] + [7]

+

[4] + as([5]) + [6] + as([7])

\ \/ — J/ o
[1,2,3] + [4] + (5,6, 7]
N | N LU

L

[11 2’ 3, 4’ 5’ 6, 7]

def quicksort(lst):
if len(lst) < 2:
return lst([:]

else:
pivot = 1lst[0] —> 1 s4p -
. . . . /‘) .S‘(‘CPS
smaller, bigger = partition(lst[l:], pivot)
_ R
smaller sorted = quicksort(smaller)z
bigger sorted = quicksort (bigger)
Joms
return smaller sorted + [pivot] + [— ™ ! = P
bigger sorted g OO
- e oo s
Le st

« If the pivot yields uneven partition (one empty, one with the rest) we get:
o The size decreases by 1 at each recursive call
o Adding the cost of each level gives this (n"2) expression

o (n-1)+[n+(n-1)+(n-2)+..+1]=(n-1)+n(n+1)/2,

Best case : O (n log n) -> Basically great pivots
Worst case: O(n”2) -> Basically terrible pivots

The constants have to do with the number of computer operations, so O(100n) >
O(50n)

Also looking at probability, bad inputs for quick sort are pretty rare

Therefore quick sort is not as bad as it looks lol :)

