
7.2 Efficiency of Recursive Sorting Algorithms
To analyze the efficiency of recursive functions :

Analyse non-recursive part of the code
Factor in the cost for each recursive call made

MERGESORT:

For a list of length n where n >=2 :

For the non-recursive part is linear
Recursive part:

The height of the tree = recursion depth (# recursive calls made before base case is
reached)
Recursion depth of merge sort:
of times n is divided by 2 to get to 1 (2^k = n) -> log n
MERGESORT Worst-case/best-case running time: O(n log n)

QUICKSORT
If the pivot is always in the middle then the running time is the same as merge sort!

If the pivot yields uneven partition (one empty, one with the rest) we get:
The size decreases by 1 at each recursive call
Adding the cost of each level gives this (n^2) expression
(n-1) + [n + (n-1) + (n-2) + ... + 1] = (n - 1) + n(n+1)/2,

Best case : O (n log n) -> Basically great pivots
Worst case: O(n^2) -> Basically terrible pivots

The constants have to do with the number of computer operations, so O(100n) >
O(50n)
Also looking at probability, bad inputs for quick sort are pretty rare
Therefore quick sort is not as bad as it looks lol :)

