
Runtime Analysis
CSC236 - Fall 2022

October 3rd / 4th

Review and understand
the big O, big Theta and
big Omega complexity
classes

01.

Learning Objectives

Practice writing proofs
about complexity

Practice finding the big
O complexity for
mathematical
expressions

Analyze code to
compute exactly how
many steps a program
takes

03.

02.

04.

Runtime
Analysis

The running time of a piece
of code is proportional to a
function of the number of

steps carried out by the
computer running the code

Source: https://thecodingbay.com/wp-content/uploads/2022/04/Complexities-Graph1.png

Asymptotic Bounding

How the program behaves as input
gets large!!!

Source: https://miro.medium.com/max/742/1*WBYUz6Lh2Z21DQnEk-MWFQ.png

Asymptotic Bounding

Gives upper bound to
the expression

Big-Oh O

upper bound = lower bound

Big Theta 𝚯
Gives lower bound to the

expression

Big Omega 𝝮

The images used in this slide are from this very useful video: https://www.youtube.com/watch?v=bxgTDN9c6rg

https://www.youtube.com/watch?v=bxgTDN9c6rg

Big O for Mathematical
Expressions

For each of the mathematical
expressions in the table, provide a

big O upper bound

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon and infographics & images by Freepik

Worksheet
Questions

2 - 4

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

